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EFFECT OF RADIATION SCATTERING ON THE DYNAMICS

OF THE TRANSITIONAL ZONE DURING SOLIDIFICATION

OF A SEMITRANSPARENT MATERIAL

UDC 536.3+536.42N. A. Rubtsov and N. A. Savvinova

The effect of isotropic scattering in a two-phase zone on the velocity of boundaries, thickness of the
transitional zone, and distribution of the solid phase over the two-phase zone thickness in the course
of solidification of a semitransparent material is considered. A generalized model of phase transition
in a semitransparent medium is used. The results of numerical calculations show that radiation
scattering can exert a significant effect on the structure and size of the two-phase zone and also on
heat transfer (temperature gradient) in the crystal being formed.
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It was shown in [1–3] that the calculations of radiative–conductive heat transfer in the course of melting
or crystallization of a semitransparent material with the use of the classical model of the phase transition of the
first kind with radiative heat transfer playing the governing role revealed regimes with a nonmonotonic distribution
of temperature ahead of the flat phase-transition front. It was noted that another model should be used here.
A generalized model of phase transition was proposed in [4, 5]; the model takes into account the possible formation of
a two-phase zone during melting or solidification of the semitransparent material. Based on this model, temperature
and solid-phase distributions over the two-phase zone thickness and velocities of the transitional zone boundaries for
absorbing and radiating media were obtained. It seems of interest to use this model to study the effect of radiation
scattering in the two-phase zone, which was ignored previously and which can arise because of the inhomogeneous
structure of this zone. If all the parameters of radiative heat transfer (radiation scattering, reflection of radiation
from internal boundaries, and dependences of optical properties on the radiation wavelength) are taken into account,
it is difficult to use the formal solutions of the radiation-transfer equation for a three-layer system [4, 5] because
the expressions for radiation fluxes are rather cumbersome. In this situation, it seems possible to use the algorithm
developed on the basis of the modified method of mean fluxes (MF method) to numerically solve the radiation-
transfer equations. Application of this method to a two-layer system ensures high accuracy in studying radiative–
conductive heat transfer with the use of the classical model of phase transition [1–3].

In the generalized model of phase transition, the medium where the phase transformation occurs is rep-
resented in the form of three layers with different optical properties; the layers are separated by flat boundaries
(Fig. 1).

Neglecting diffusion and possible convective processes in the melt, we obtain a system of equations that
describe the phase transformation, consisting of three equations of heat transfer for the liquid and solid phases
and for the two-phase zone in thermodynamic equilibrium at the phase-transition temperature. The last equation
takes into account release or absorption of latent heat of phase transition in the two-phase zone during partial
solidification or melting. In the dimensionless form, with constant thermophysical parameters of the medium, the
system has the following form [4, 5]:
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Fig. 1. Diagram of the generalized model of phase transition: 1) solid
phase; 2) liquid phase; 3) two-phase zone.
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From the heat-balance conditions at the discontinuity, we obtain the following conditions at the boundaries
of the transitional zone s1, s2:
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In (1)–(3), θ = T/Tr is the dimensionless temperature, ci = Ciρi/(Crρr) is the dimensionless heat capacity,
Λi = λi/λr is the dimensionless thermal conductivity, ξ = x/L is the dimensionless coordinate, si = Si/L are
the dimensionless coordinates of the two-phase zone boundaries, Φi = Ei/(σT 4

r ) is the dimensionless density of the
resultant radiation flux, θ∗ = Tph/Tr is the dimensionless temperature of phase transition, Y = γρph/(ρrCrTr) is the
dimensionless latent heat of phase transition, η = 4σT 3

r t/(ρrCrL) is the dimensionless time, N = λr/(4σT 3
r L) is the

radiative–conductive parameter, C [J/(kg ·K)] is the specific heat capacity, ρ [kg/m3] is the density, λ [W/(m ·K)] is
the thermal conductivity, L [m] is the total thickness of the layer, E [W/m2] is the density of the resultant radiation
flux, γ [J/kg] is the latent heat of phase transition, and σ [W/(m2 ·K4)] is the Stefan–Boltzmann constant; the
subscript r refers to scale parameters; subscript i (i = 1, 2, 3) indicates the numbers of the layers; α(ξ, η) is the
fraction of the solid phase in the transitional zone, whose value varies from 0 to 1.

The solution of the problem consists of determining the dimensionless distributions of the temperature
θ(ξ, η), the density of the resultant radiation flux Φ(ξ, η), and the fraction of the solid phase over the thickness of
the two-phase zone α(ξ, η), and also the positions of internal boundaries s1(η), s2(η) at each time instant in the
region 0 6 ξ 6 1.

The boundary-value problem (1)–(3) with initial and boundary conditions was solved numerically by the
finite-difference method. The implicit difference scheme was constructed by the integrointerpolation method. The
Newton method was used to determine the unknown s1 and s2.
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Fig. 2. Motion of the transitional zone boundaries in the course of solidification of a semitransparent
material with isotropic scattering in the two-phase zone: calculation by the classical model of phase
transition (1) and for ω3 = 0 (2), 0.5 (3), 0.7 (4), and 0.9 (5).

Fig. 3. Distribution of the solid phase over the thickness of the two-phase zone at different times: the solid
curves refer to ω3 = 0 and η = 3.45 (1), 5.25 (2), 6.57 (3), and 8.233 (4); the dot-and-dashed curves refer
to ω3 = 0.5 and η = 3.69 (1), 5.97 (2), 7.34 (3), and 9.08 (4); the dotted curves refer to ω3 = 0.7 and
η = 4.11 (1), 7.72 (2), 9.69 (3), and 11.85 (4).

The calculations were first performed in the classical Stefan formulation, and the generalized model was
used from the moment monotonicity was violated. In calculations by the classical model with certain values of
parameters, the monotonicity of the temperature distribution is not violated. In this case, the classical model of
phase transition is valid, which becomes inapplicable if the two-phase zone is formed, which is taken into account in
the generalized model. After the transitional zone disappears, the generalized model again reduces to the classical
one.

In the present work, we numerically study the effect of radiation scattering in the two-phase zone on the
dynamics of the transitional zone in the course of crystallization of a flat layer of a semitransparent medium
whose optical properties correspond to a gray body. The problem conditions are the same as in [4, 5]. For the
solidification process, we have c1 = c2 = 1, Λ1 = Λ2 = 1, Y = 0.1, θ∗ = 0.5, N = 0.01, θ(ξ, 0) = 0.7, θ(0, η) = 0.3,
and ∂θ(1, η)/∂ξ = 0. The refractive indices are assumed to be identical for all phases (n1 = n2 = n3 = 1.5);
therefore, there is no reflection from internal boundaries. The algorithm for solving the radiation-transfer equations
was developed on the basis of the MF method [1–3] modified for the conditions of a three-layer system. The
differential equations are solved for three layers (i = 3), and the spectral range of absorption corresponds to i = 1
in the gray body approximation. Divergence of the radiation flux is determined in the finite-difference form from
the values of radiation fluxes, in contrast to the previous works where formal solutions were used. In determining
the radiation fluxes on the basis of the MF algorithm, the dimensionless thickness of each layer is assumed to equal
unity; in solving the energy equations, the total thickness of the initial layer is set equal to unity. The positions of
internal boundaries vary from zero to unity. The scale correspondence of the regions is obtained by interpolation
of temperature and radiation distributions.

It is assumed that only the two-phase zone being formed is a scattering medium. The two-phase zone
is a radiating, absorbing, and scattering medium. The scattering coefficient, scattering albedo, and the type of
radiation scattering in the two-phase zone depend on a particular structure of the two-phase zone and, strictly
speaking, can be determined only experimentally. Such experiments, however, were never performed. Therefore, it
seems important to numerically simulate the dynamics of the transitional zone, depending on the prescribed values
of the optical thickness (attenuation factors) and albedo of single scattering. Radiation scattering anisotropy, as is
shown in [2], does not introduce any principal changes in the character of temperature fields but alters the velocity
of the interface. In the present work, we consider isotropic scattering.
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Fig. 4. Distributions of temperature (a) and radiation fluxes (b) in the course of solidification of the layer
of a semitransparent material with formation of a two-phase zone: the solid curves refer to ω3 = 0 and
η = 3.45 (1), 5.25 (2), 6.57 (3), and 8.233 (4); the dotted curves refer to ω3 = 0.7 and η = 4.11 (1), 7.72
(2), 9.69 (3), and 11.85 (4); curve I is the initial temperature distribution.

Figure 2 shows the numerical results on motion of the transitional zone boundaries during solidification versus
the albedo of single isotropic scattering ω3 in the two-phase zone (Fo = ηN is the Fourier number). The attenuation
factor of the two-phase zone æ3 is determined from the condition τ3 = æ3L = 2, and the coefficients of absorption
of the solid phase (α1) and liquid phase (α2), as in [1–5], are determined from the conditions τ1 = æ1L = 1 and
τ2 = æ2L = 2 (L = 0.1 m). Curve 1 corresponds to the calculation by the classical model of phase transition. As
was indicated above, when monotonicity of the temperature field is violated, which corresponds to log Fo1 in Fig. 2,
the calculation is performed in the generalized formulation of the Stefan problem. Curves 2 and 3 in Fig. 2 refer
to calculations for a non-scattering two-phase zone. As in [5], the boundary of the two-phase zone s2 is almost
immediately shifted to the right boundary, and the boundary s1 moves monotonically until it reaches the right
boundary of the three-layer system. A comparison with the results of [5] shows that the difference in the methods
of calculating radiative heat transfer is manifested at the end of the process: the motion of the left boundary of
the two-phase zone s1(η) becomes slower. The distribution of the solid phase over the thickness of the two-phase
zone α(ξ) at different times η in the absence of radiation scattering (solid curves in Fig. 3) is in good agreement
with the distribution obtained in [5] for a non-scattering medium. It follows from Fig. 2 that isotropic scattering
of radiation in the two-phase zone attenuates the motion of the left boundary of the two-phase zone. In the case
of strong scattering (curves 4 and 5 in Fig. 2), a finite-thickness two-phase zone is initially formed, and then the
second boundary of the two-phase zone reaches the right (opaque) boundary of the three-layer system. The role
of radiation absorption and also the role of radiative cooling (own radiation) in the two-phase zone become less
important because of the strong scattering (with increasing albedo ω3). This is also evidenced by the distribution of
the solid phase over the two-phase zone thickness (dotted curves in Fig. 3). The fraction of the solidified phase in the
two-phase zone is considerably smaller than for ω3 = 0 and ω3 = 0.5. It follows from Fig. 3 that the contributions of
scattering and absorption to radiative cooling of the melt in the two-phase zone are identical for ω3 = 0.5 (dot-and
dashed curves in Fig. 3). Thus, radiation scattering in the two-phase zone and the two-phase zone structure are
interrelated.

Figure 4 shows the calculated distributions of temperature and radiation fluxes in the course of solidification
of a flat layer of a semitransparent medium with formation of a two-phase zone. Curve I corresponds to the initial
temperature distribution. The temperature in the two-phase zone is maintained equal to the phase-transition
temperature. With allowance for radiation scattering, the absolute values of the resultant radiation fluxes are
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lower than in the case of an only absorbing layer. The temperature in the solid layer also decreases, which alters
the temperature gradients. The calculation results for radiation fluxes and temperature distributions are in good
agreement with the calculations of [5], which confirms the validity of using the algorithm developed on the basis of
the MF method for numerical determination of radiation fluxes and divergence of the radiation flux in a multilayer
semitransparent system.

The existence of the two-phase zone in the case of rapid crystallization of refractory oxides semitransparent
for thermal radiation was experimentally confirmed in [6]. The necessity of using the mathematical model of melting
and solidification of semitransparent materials with allowance for formation of an extended two-phase zone caused
by radiative heat transfer is also noted in [6]. This model of phase transition in a semitransparent medium requires
further improvement: it is necessary to take into account all physical phenomena accompanying the crystallization
or melting process with formation of a two-phase zone and to use experimental data on the properties and structure
of the two-phase zone.

This work was supported by the grant of the President of the Russian Federation on state support of leading
scientific schools (Grant No. NSh-523.2003.1).
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